
A Review of Multi-Tasking Strategies

A Review of
Multi-Tasking Strategies

Volkan Yazıcı
Bilkent Univ. Dept. of Comp. Eng.

vyazici@cs.bilkent.edu.tr

CS 541 (Chip Multiprocessors) HW#3 Report, Ankara, 2009

1 / 14



A Review of Multi-Tasking Strategies

1 Introduction

2 Processes, Communication and Context Switching

3 Threads, Shared State and Implementation

4 New Approaches

5 The End

2 / 14



A Review of Multi-Tasking Strategies

Introduction

Abstract

Multi-tasking strategies (processes, threads) on unicore and
multicore architectures for various operating systems.

Latest improvements in the area.

Examples from modern operating systems.

3 / 14



A Review of Multi-Tasking Strategies

Introduction

A Brief History

Early Days

1 Giving program instructions to the instructor.

2 Results on punchards after some hours.

3 Was not a problem!

With Gigantic Processing Power

I/O is the bottleneck.

New techniques (time sharing systems, etc.) needed for
processor utilization.

Multi-users, multi-processes, multi-jobs... Multi-tasking!

4 / 14



A Review of Multi-Tasking Strategies

Introduction

Multi-Tasking Strategies

Multiprogramming Systems - Task keeps running until it
performs an operation that requires waiting for an external
event.

Time-Sharing Systems - Running task is required to
relinquish the processor after a specific period of time.

Real-Time Systems - Some waiting tasks are guaranteed to
be given the processor when an external event occurs.

5 / 14



A Review of Multi-Tasking Strategies

Processes, Communication and Context Switching

Processes

Process

Base primitive forming tasks.

Kernels are developed with both unicore and multicore
support.

Capabilities

Processes can be simulated to be running concurrently.

Individual processes can be physically run on distinct
processors.

6 / 14



A Review of Multi-Tasking Strategies

Processes, Communication and Context Switching

The Good, The Bad, The Ugly

Advantages

Concurrency.

True paralellization!

Disadvantages

When executing multiple processes on the physically same
processor

A significant amount of state information. (e.g. file handles,
user permissions, etc.)
Context switching related overheads.
TLB (Translation Lookaside Buffer) flushing etc.

Separate address spaces, communication (IPC, RPC, etc.)
overhead.

7 / 14



A Review of Multi-Tasking Strategies

Threads, Shared State and Implementation

Threads and Shared State

Basic Concept

Threads are lightweight processes.

Implementation differs from one operating system to another.

Advantages

Shared address space. (No IPC overhead.)

Cheaper context switches.

8 / 14



A Review of Multi-Tasking Strategies

Threads, Shared State and Implementation

Implementation Strategies

1:1 - Threads are one-to-one represented by schedulable
entities in the kernel.

Easy to implement.

N:M - N threads are mapped to M schedulable entities in the
kernel.

Easy scheduling, improved context switching performance.
Complex implementation – requires work in kernel and user
level.
Scheduler Activations (SA) is a threading mechanism that
implements N:M strategy.

N:1 - N threads are mapped to a single schedulable entity in
the kernel.

Clearly fast context switching.
Oblivious to hardware capabilities.
Generally adopted by programming language implementations.

9 / 14



A Review of Multi-Tasking Strategies

Threads, Shared State and Implementation

Thread Scheduling

Cooperative - Threads themselves inform the operating
system to relinquish the control.

Poorly designed programs can block whole system.
Rarely used in modern systems.

Preemptive - Kernel decides when to switch the control
between threads.

Involves an interrupt mechanism.
All processes will get some amount of CPU time at any given
time.

10 / 14



A Review of Multi-Tasking Strategies

New Approaches

Plan 9 Processes

A single class of process. (Process = Thread = ...)

Fine control of the process resources. (Memory, file
descriptors, etc.)

Technique is feasible since...

Efficient system call interface.
Cheap process creation and scheduling.

11 / 14



A Review of Multi-Tasking Strategies

New Approaches

Erlang Processes

A functional programming language designed at the Ericsson
Computer Science Laboratory.

Extremely lightweight processes.

No shared memory and communicate by asynchronous
message passing. (Silver bullet in distributed computing!)

Very large numbers of concurrent processes.

Process spawning and scheduling are managed by the Erlang.

12 / 14



A Review of Multi-Tasking Strategies

New Approaches

Fibers

User-level threads are working in a cooperative way. (No
preemption!)

Fibers yield themselves to run another fiber while executing.

Actually everything is sequential. (Hence no need for
thread-safety, locking, etc.)

Cannot benefit from benefit from multi-core, multi-processor
architectures.

13 / 14



A Review of Multi-Tasking Strategies

The End

Questions?

14 / 14


	Introduction
	Processes, Communication and Context Switching
	Threads, Shared State and Implementation
	New Approaches
	The End

