A Review of Multi-Tasking Strategies

A Review of

Multi-Tasking Strategies

Volkan Yazici
Bilkent Univ. Dept. of Comp. Eng.
vyazici@cs.bilkent.edu.tr

CS 541 (Chip Multiprocessors) HW+#3 Report, Ankara, 2009



A Review of Multi-Tasking Strategies

© Introduction

e Processes, Communication and Context Switching
© Threads, Shared State and Implementation

@ New Approaches

© The End

)

14



A Review of Multi-Tasking Strategies
Introduction

Abstract

o Multi-tasking strategies (processes, threads) on unicore and
multicore architectures for various operating systems.

@ Latest improvements in the area.

@ Examples from modern operating systems.



A Review of Multi-Tasking Strategies
Introduction

A Brief History

Early Days

@ Giving program instructions to the instructor.

@ Results on punchards after some hours.

© Was not a problem!

y

With Gigantic Processing Power

@ |/O is the bottleneck.

@ New techniques (time sharing systems, etc.) needed for
processor utilization.

@ Multi-users, multi-processes, multi-jobs... Multi-tasking!




A Review of Multi-Tasking Strategies
Introduction

Multi-Tasking Strategies

@ Multiprogramming Systems - Task keeps running until it
performs an operation that requires waiting for an external
event.

@ Time-Sharing Systems - Running task is required to
relinquish the processor after a specific period of time.

@ Real-Time Systems - Some waiting tasks are guaranteed to
be given the processor when an external event occurs.



A Review of Multi-Tasking Strategies
Processes, Communication and Context Switching

Processes

@ Base primitive forming tasks.

@ Kernels are developed with both unicore and multicore
support.

Capabilities

@ Processes can be simulated to be running concurrently.

@ Individual processes can be physically run on distinct
processors.

A\

6/14



A Review of Multi-Tasking Strategies
Processes, Communication and Context Switching

The Good, The Bad, The Ugly

@ Concurrency.

@ True paralellization!

Disadvantages

@ When executing multiple processes on the physically same
processor
e A significant amount of state information. (e.g. file handles,
user permissions, etc.)
o Context switching related overheads.
e TLB (Translation Lookaside Buffer) flushing etc.

@ Separate address spaces, communication (IPC, RPC, etc.)
overhead.

A




A Review of Multi-Tasking Strategies
Threads, Shared State and Implementation

Threads and Shared State

@ Threads are lightweight processes.

@ Implementation differs from one operating system to another.

@ Shared address space. (No IPC overhead.)

@ Cheaper context switches.




A Review of Multi-Tasking Strategies
Threads, Shared State and Implementation

Implementation Strategies

@ 1:1 - Threads are one-to-one represented by schedulable
entities in the kernel.

o Easy to implement.

@ N:M - N threads are mapped to M schedulable entities in the
kernel.

e Easy scheduling, improved context switching performance.

o Complex implementation — requires work in kernel and user
level.

e Scheduler Activations (SA) is a threading mechanism that
implements N:M strategy.

@ N:1 - N threads are mapped to a single schedulable entity in
the kernel.

o Clearly fast context switching.

e Oblivious to hardware capabilities.

o Generally adopted by programming language implementations.



A Review of Multi-Tasking Strategies
Threads, Shared State and Implementation

Thread Scheduling

@ Cooperative - Threads themselves inform the operating
system to relinquish the control.
e Poorly designed programs can block whole system.
o Rarely used in modern systems.
@ Preemptive - Kernel decides when to switch the control
between threads.
o Involves an interrupt mechanism.
o All processes will get some amount of CPU time at any given
time.

10/14



A Review of Multi-Tasking Strategies
New Approaches

Plan 9 Processes

@ A single class of process. (Process = Thread = ...)

@ Fine control of the process resources. (Memory, file
descriptors, etc.)

@ Technique is feasible since...

o Efficient system call interface.
o Cheap process creation and scheduling.

11 /14



A Review of Multi-Tasking Strategies
New Approaches

Erlang Processes

@ A functional programming language designed at the Ericsson
Computer Science Laboratory.

@ Extremely lightweight processes.

@ No shared memory and communicate by asynchronous
message passing. (Silver bullet in distributed computing!)

@ Very large numbers of concurrent processes.

@ Process spawning and scheduling are managed by the Erlang.

12 /14



A Review of Multi-Tasking Strategies
New Approaches

Fibers

@ User-level threads are working in a cooperative way. (No
preemption!)
@ Fibers yield themselves to run another fiber while executing.

@ Actually everything is sequential. (Hence no need for
thread-safety, locking, etc.)

@ Cannot benefit from benefit from multi-core, multi-processor
architectures.

13 /14



A Review of Multi-Tasking Strategies
The End

Questions?




	Introduction
	Processes, Communication and Context Switching
	Threads, Shared State and Implementation
	New Approaches
	The End

